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We consider the harmonic inversion problem, and the associated spectral estimation problem, both of
which are key numerical problems in NMR data analysis. Under certain conditions (in particular, in exact
arithmetic) these problems have unique solutions. Therefore, these solutions must not depend on the
inversion algorithm, as long as it is exact in principle. In this paper, we are not concerned with the algo-
rithmic aspects of harmonic inversion, but rather with the sensitivity of the solutions of the problem to
perturbations of the time-domain data. A sensitivity analysis was performed and the counterintuitive
results call into question the common assumption made in ‘‘super-resolution” methods using non-
uniform data sampling, namely, that the data should be sampled more often where the time signal has
the largest signal-to-noise ratio. The numerical analysis herein demonstrates that the spectral parameters
(such as the peak positions and amplitudes) resulting from the solution of the harmonic inversion
problem are least susceptible to the perturbations in the values of data points at the edges of the time
interval and most susceptible to the perturbations in the values at intermediate times.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

With the growing interest in so-called ‘‘super-resolution”
methods for spectral analysis of NMR data [1–10] it is important
to understand the general limitations imposed by the harmonic
inversion problem (HIP) itself, aside from specific algorithmic as-
pects of its numerical solution. The HIP is to fit the time-domain
data as a superposition of complex sinusoids or, equivalently, to
cast the NMR spectrum as a superposition of Lorentzian peaks.
The Fourier transform, a linear method, treats each time point
of a free induction decay (FID) C(ns) � cn(n = 0, . . . ,N � 1) on an
equal footing. A small perturbation of any particular time point
leads to a small perturbation in the baseline of the FT spectrum,
and a predictable small change in peak positions and integrals. As
such, no point in the time domain is especially important.
However, in the HIP, where the spectrum is estimated from a
parametric form, there is no guarantee of such uniform behavior
with respect to small perturbations of particular points. The
intrinsic sensitivity of the spectral estimate to errors in the
input, which could be either noise or quantization errors from
the analog-to-digital conversion, is important to ascertain in this
case.
ll rights reserved.
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2. The harmonic inversion problem

Given an N-point time signal C(ns) � cn(n = 0, . . . ,N � 1), defined
on an equidistant grid, consider the harmonic inversion problem

cn ¼
XK

k¼1

dkun
k ; ð1Þ

where the two sets of spectral parameters, uk � eisxk and dk

(k = 1, . . . ,K) identify each peak frequency and width, and integral
and phase, respectively.

The optimization problem (1) may seem unremarkable and
somewhat arbitrary. However, it is by far the most popular among
all possible parametric forms. The reason for the ubiquity of the
HIP lies in its unique property of having a linear algebraic solution
(see for example Ref. [9]) and so allowing the consideration of a
much larger parameter space than is feasible in generic non-linear
optimization problems, and without the problems of local minima
that can hinder other forms. That is, the HIP has a unique solution
and a numerically efficient means to obtain it.

There is, however, a hidden subtlety in the formulation of the
HIP that arises if the total number of terms K is fixed and so inde-
pendent of N. This seemingly natural assumption, motivated by the
underlying idea that the number of signal peaks is fixed once the
sample for analysis is chosen, is generally flawed. The problem be-
comes ill-defined, making the solution extremely sensitive to the
errors (noise) in the input data. Even starting with a very special
case of an N-point FID consisting of exactly K damped sinusoids,
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where K < N/2, a general infinitesimal perturbation of the input sig-
nal cn will promptly destroy this special property, and can immedi-
ately require K = N/2 peaks to obtain an exact fit. A well-defined
numerically stable formulation of the harmonic inversion problem
is thus always to set K = N/2 (considering, without serious sacrifice,
only even N), corresponding to having the number of unknowns
consistent with the number of equations.

Assuming N = 2K, the fact that the HIP Eq. (1) has a unique solu-
tion is quite remarkable. This is a general result, independent of the
algorithm used to numerically solve the harmonic inversion prob-
lem. In practice, however, obtaining the solution may be quite dif-
ficult. For example, the well known variant of the harmonic
inversion problem, namely the multiexponential fit,

cn ¼
XK

k¼1

dke�nskk ; ð2Þ

where cn, dk and kk are all real, is a famous example of an appealing
and easily formulated problem that typically has no meaningful
numerical solution. That is, using finite arithmetic, it is generally
impossible to uniquely fit a purely decaying sequence cn by more
than K = 2 exponentials. As more exponentials are included, the ex-
tracted parameters change abruptly, bearing little relation to those
determined with fewer exponentials. These difficulties aside, the fo-
cus here is on the universal properties of the exact solution of Eq.
(1) and its sensitivity to the input data cn rather than the method
used to obtain the exact solution of Eq. (1).

3. Solving the harmonic inversion problem

One of the simplest algorithms to solve Eq. (1) is the Matrix-Pen-
cil Method (MPM); it is known in the literature under various
names (see e.g. Refs. [1,2]) and is closely related to many other lin-
ear algebraic methods. Define the M �M data matrices

UðpÞmn ¼ cmþnþp ð3Þ

with n = 0, . . . ,M � 1, m = 0, . . . ,M � 1, M = N/2 and p = 0 or 1. The
solution of Eq. (1) is given by the generalized eigenvalue problem

ðUð1Þ � ukUð0ÞÞBk ¼ 0 ð4Þ

where the (column) eigenvectors Bk satisfy the orthonormality
condition

BT
kUð0ÞBk0 ¼ dkk0 ; ð5Þ

which follows from the symmetry of the data matrices, [U(p)]T = U(p).
The amplitudes are obtained by

dk ¼ CTBk

� �2
ð6Þ

with CT = (c0, . . . ,cM�1). It is Eq. (4) that identifies the MPM. The com-
pact formula for the amplitudes, Eq. (6) was first given in Ref. [11].
Although with exact arithmetic Eqs. (3)–(6) give the exact solution
to the HIP (1), such an approach is never practical whenever N is
large. A much more practical algorithm, the Filter Diagonalization
Method (FDM), is derived by using a transformation to a Fourier
basis

eU ðpÞ ¼ ZTUðpÞZ; ð7Þ

where Z is a rectangular M � Kwin matrix given by

Znj
¼ wnz�n

j ðj ¼ 1; . . . ;Kwin; n ¼ 0; . . . ;M � 1Þ; ð8Þ

and zj � e2pifj with real values fj distributed uniformly within a gen-
erally small frequency interval fmin < fj < fmax; and wn defines a
weighting function. The unusual form of the basis transformation
(7) is chosen so that the transformed Kwin � Kwin matrices are also
symmetric, ½eU ðpÞ�T ¼ eU ðpÞ. The resulting generalized eigenvalue
problem reads

eU ð1Þ � uk
eU ð0Þ� �eBk ¼ 0; eBT

k
eU ð0ÞeBk0 ¼ dkk0 ; ð9Þ

with the new eigenvectors related to those in Eq. (4) by Bk � ZeBk.
The approximation holds assuming that the eigenvectors Bk can
be expanded in the narrow-band Fourier basis for eigenvalues
which have their real part of the frequency within the frequency
window. For these frequencies, the amplitudes dk can then be com-
puted using

dk ¼ ðCTZeBkÞ2: ð10Þ

For the special case of wn = 1 [11], the eU ðpÞ matrices can be com-
puted efficiently using

eU ðpÞ
jj0
¼ ðzj � zj0 Þ

�1 zj

XM�1

n¼0

z�n
j0 cnþp � zj0

XM�1

n¼0

z�n
j cnþp � z1�M

j

X2M�2

n¼M

zM�n
j0 cnþp

"

þ z1�M
j0

X2M�2

n¼M

zM�n
j cnþp

#
: ð11Þ

For zj ¼ zj0 a numerically practical expression can be obtained
after taking the zj ! zj0 limit:

eU ðpÞjj ¼
X2M�2

n¼0

ðM � jM � n� 1jÞcnþpz�n
j : ð12Þ

Generally the spectral parameters computed by FDM in a small
frequency window using Kwin basis functions are as accurate as
those computed by MPM using K = N/2 basis functions over the en-
tire spectral width. The tremendous practical advantage of FDM is
that it scales quasi-linearly with N versus the �N3 scaling of MPM.
One reason for this property of FDM is that the Fourier-trans-
formed matrices eU ðpÞ are diagonally dominant, with eU ð1Þjj =

eU ð0Þjj being
already a good approximation for the eigenvalues uj. Given this
property of FDM, the possibly large spectral width [�1/2s,1/2s]
can be covered with small windows, and the whole ‘‘line-list” (dk,
xk) can be constructed by collecting the results from all the
small-window calculations. However, one can always take
Kwin = K = N/2 and [fmin, fmax] = [�1/2s,1/2s], in other words a com-
plete Fourier basis, in which case the transformation matrix Z is
unitary and with exact arithmetic the resulting spectral parame-
ters using either Eq. (4) or Eq. (9) would be indistinguishable. It
is also important to note that all other ‘‘correct” linear algebraic
algorithms, such as the Prony method, Linear Prediction (LP), etc.,
should yield the same solution in exact arithmetic.

4. Sensitivity analysis

The parameters extracted from the linear algebraic fit can be in
error when the data is noisy. The sensitivity of the output of the
method to perturbations in the input can be investigated by the
classical error, or sensitivity, analysis. In this section, we discuss
how the solution of the HIP (1) depends on perturbation of the in-
put values ct. For example, the spectrum S(f) computed from the
parameters extracted from the solution of the HIP or estimated di-
rectly (see Appendix B) is a functional of {ct} (t = 0, . . . ,N � 1). Given
a finite variation, dct, of a single data point, ct, the spectral sensitiv-
ity can be defined

Et ½Sðf Þ� ¼
1

Sðf Þ
dSðf Þ
dct

���� ���� ðt ¼ 0; . . . ;N � 1Þ: ð13Þ

For small enough variations, dct, we can approximate the spec-
tral sensitivity by the spectral derivative

Et ½Sðf Þ� �
1

Sðf Þ
@Sðf Þ
@ct

���� ����: ð14Þ
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Fig. 1. The real part of the synthesized time signal cn = c(ns) (cf. Eq. (24)) used here
for numerical demonstration and its exact infinite-time FT spectrum S(f).
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(For large variations the sensitivity is a function of dct.) The spectral
sensitivity itself is of limited utility, however, as small errors in the
positions of narrow peaks would register as large spectral devia-
tions, even though they might not be considered serious errors from
a spectroscopic viewpoint. Therefore, even when considering the
spectrum, a more convenient sensitivity measure must be associ-
ated with the ‘‘line-list” corresponding to the spectrum. For
example, consider a narrow peak located at frequency fk with
amplitude Sk = S(fk), and assume that S(f) has a maximum at f = fk

(the peak center and peak amplitude may be defined differently
though). Both fk and Sk are then functions of ct(t = 0, . . . ,N � 1),
and we can define the peak sensitivities by

Et½fk� :¼
dfk

dct

���� ����; Et ½Sk� :¼
1
Sk

dSk

dct

���� ����: ð15Þ

The particularly interesting case corresponds to a spectrum
with dominant features that are Lorentzian lines, i.e., when the
HIP (1) is well-posed and the line-list is given by the set of complex
frequencies xk and amplitudes dk. The corresponding sensitivity
measures can then be written

Et½xk� :¼
dxk

dct

���� ����; Et½dk� :¼
1
dk

ddk

dct

���� ���� ðt ¼ 0; . . . ;N � 1Þ: ð16Þ

Again, for small variations, dct, we have

Et½xk� �
@xk

@ct

���� ���� ¼ 1
suk

@uk

@ct

���� ����; Et ½dk� �
1
dk

@dk

@ct

���� ����: ð17Þ

While for given variations dct calculation of the exact values of
Et[xk] may be time consuming, calculation of the derivatives, @uk/
@ct and @dk/@ct , is inexpensive within MPM (or FDM). The eigen-
value derivatives can be expressed as a variant of the Hellman–
Feynman theorem

@uk

@ct
¼ BT

k
@Uð1Þ

@ct
� uk

@Uð0Þ

@ct

 !
Bk; ð18Þ

and the eigenvector derivatives as

@Bk

@ct
¼
X
m–k

Bm

uk � um
BT

m
@Uð1Þ

@ct
� uk

@Uð0Þ

@ct

 !
Bk �

Bk

2
BT

k
@Uð0Þ

@ct
Bk: ð19Þ

(See Appendix A for derivations.) In the MPM the derivatives of the
data matrices are

@UðpÞ

@ct

" #
mn

¼ dt;ðmþnþpÞ; ð20Þ

and therefore

@uk

@ct
¼

XminðM�1;t�1Þ

n¼maxð0;t�MÞ
BknBk;ðt�n�1Þ � uk

XminðM�1;tÞ

n¼maxð0;t�M�1Þ
BknBk;ðt�nÞ; ð21Þ

where whenever m < 0 or m > M � 1 we assume that Bkm = 0. Using
the result of Eq. (19) the amplitude derivative in the MPM can be
given as

@dk

@ct
¼ CTBk

2
CT @Bk

@ct
þ @CT

@ct
Bk

" #

¼
ffiffiffiffiffi
dk

p
2

X
m–k

ffiffiffiffiffiffi
dm

p
uk � um

BT
m

@Uð1Þ

@ct
� uk

@Uð0Þ

@ct

 !
Bk �

ffiffiffiffiffi
dk

p
2

BT
k
@Uð0Þ

@ct
Bk þ Bkt

" #

¼
ffiffiffiffiffi
dk

p
2

X
m–k

ffiffiffiffiffiffi
dm

p
uk � um

XminðM�1;t�1Þ

n¼maxð0;t�MÞ
BmnBk;ðt�n�1Þ � uk

XminðM�1;tÞ

n¼maxð0;t�M�1Þ
BmnBk;ðt�nÞ

" #(

�
ffiffiffiffiffi
dk

p
2

XminðM�1;tÞ

n¼maxð0;t�MÞ
BknBk;ðt�nÞ þ Bkt

)
: ð22Þ
Now consider a rectangular Fourier basis as defined in Eq. (8)
but with wn = 1. We have

@ eU ðpÞ
jj0

@ct
¼

zjz
p�t
j0
� zj0z

p�t
j

� �
ðzj� zj0 Þ

�1
; p6 t6Mþp�1;

z1�M
j0 zMþp�t

j � z1�M
j zMþp�t

j0

� �
ðzj� z0Þ�1

; Mþp6 t6 2Mþp�2;

0; otherwise;

8>>><>>>:
@ eU ðpÞjj

@ct
¼ ðM� jMþp� t�1jÞzp�t

j ; p6 t6 2Mþp�2: ð23Þ

The diagonal elements of the derivative matrix scale with t
as � (M � jM + p � t � 1j). This suggests that on average the eigen-
values are most sensitive to elements ct with t �M = N/2, the sen-
sitivity decaying linearly towards the beginning (t ? 0) and the tail
(t ? 2M�1 = N � 1) of the signal array. This sensitivity to errors in
individual data entries is the central result of this paper. Data
points in the center of the acquisition time window are more
important than those at the head or tail of the data. In the two-
dimensional case there is a direct product dependence of the sen-
sitivity in each dimension, resulting in an extraordinary weighting
of points in the center of both time domains. This result does not
depend on the particular method used to obtain the numerical an-
swer, but rather is an intrinsic feature of the HIP itself. Mathemat-
ically, as shown in Eq. (A3), the eigenvalue derivative is invariant
under any basis transformation, making the non-uniform depen-
dence of @uk/@ct on t a general result that should show up in any
inversion algorithm that solves the HIP.

5. A numerical example

A model time signal similar to that introduced earlier [7] was
used to investigate the predicted non-uniform sensitivity. The
spectrum (see Fig. 1) consists of triplets with couplings, line
widths, chemical shift differences, and integrals all decreasing geo-
metrically, to supply a full range of resolution tests in one go. The
time-domain data was generated using the formula

cn ¼ 10
X9

m¼0

exp in2psðð450þ iÞ � 0:75m � 250Þ
� ��

þ exp in2psðð460þ iÞ � 0:75m � 250Þ
� �

þ exp in2psðð470þ iÞ � 0:75m � 250Þ
� �	

� 0:75m; ð24Þ
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where s = 0.002 s, a 500 Hz spectral width. The sensitivity analysis
focused on two peaks located at f1 = 210 Hz and f2 = 87.5 Hz (peaks
1 and 2 in Fig. 1).

We note that there are several possible ways to create the spec-
tral representation from the parameters. It can either be created
exactly using Regularized Resolvent Transform (RRT), or the FDM
spectrum using (B8) (see Appendix B for further details). The dif-
ferences between the RRT (B5) and FDM (B8) spectra were insignif-
icant, so all the reported results are obtained by FDM. Also, to
streamline the analysis we only present results corresponding to
N = 128 and Kwin = 15. These results are representative of many cal-
culations that were tried. Two types of calculations were per-
formed, labeled Type A and Type B.

Type A. Gaussian noise nn,
E
t[ω

1
]

Fig. 2.
realizat
realizat

E

cn ! cn þ nn; ð25Þ
was added to the model signal such that
X
n

jcnj2 ¼ 103 �
X

n

jnnj2:
0 40 80 120

t

0

Fig. 3. Sensitivity of the complex frequency x2 of peak 2 averaged over 1000
different noise realizations.
The noisy signal was then processed yielding the spectral parame-
ters xk and dk and the spectrum S(f), together with the derivatives
of the spectral parameters with respect to ct, such as @xk/@ct. Next,
for each value of t = 0, . . . ,N � 1 each data point, ct, is modified one
at a time
ct ! ct þ dct ;
0 40 80 120

0
0.

00
2

0.
00

4
0.

00
6

E
1 [

d 1
]

using dct ¼ jdctj � ei/t with the random phase /t 2 [0;2p]. The sensi-
tivities, Et[fk], Et[Sk], Et[xk] and Et[dk], as defined by Eqs. (15) and
(16), were then computed using the new parameter list and the
new spectrum.

Type B. The Type A procedure was repeated 1000 times using
different realizations of noise nn and random phases /t, and
the results for the sensitivities were averaged.
Our tests showed that as long as the single-point perturbations
jdctj were of the order of noise, nn, or less, that there was no dif-
ference between the actual sensitivities and the corresponding
derivatives, that is, Eqs. (14) and (17) hold. Only when
jdctj 	 0.1 were differences noticeable, in any event they do
not lead to qualitatively different conclusions. Thus, for simplic-
ity, we only report results using jdctj = 0.1.
Fig. 2 shows the sensitivity of x1 (peak 1) for two different real-
0 40 80 120

t

0

0.01

0.02

averaged

Sensitivity of the complex frequency x1 of peak 1 (as in Fig. 1) for two
ions of noise (see text) and that averaged over 1000 different noise
ions.
izations of noise nn. As can be seen the t-dependencies of Et[x1]
are quite erratic and are different for the two cases. However,
the sensitivity obtained by averaging over 1000 different real-
izations of noise has a remarkable shape with the maximum
t

Fig. 4. Averaged sensitivity of the complex amplitude d1 of peak 1.
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f 1]

Fig. 5. Averaged sensitivity for the position, f1, of the maximum of peak 1.
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Fig. 6. Averaged sensitivity of the maximum value S1 of peak 1.
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at t � N/2 decreasing towards the edges of the time interval. For
peak 2, the sensitivity function Et[x2] shown in Fig. 3 has a sim-
ilar shape, although multiplied by a factor of �4. The spectral
parameters of peak 2 are thus less accurate and more sensitive.
This is to be expected, as peak 2 is smaller and belongs to the
triplet with closer lines.
Figs. 4–6 show averaged sensitivities of other spectral parame-
ters for peak 1. The t-dependencies of the corresponding func-
tions, Et(d1), Et(f1) and Et(S1), have shapes similar to that of
Et(x1).

6. Discussion

This investigation focused on the HIP and the spectral estima-
tion problems, which are key numerical problems in the super-res-
olution FT spectroscopy (such as NMR), and appear in many other
related fields in science and engineering. A closer investigation of
the sensitivity of the spectral estimate to perturbations of individ-
ual time-domain data points, clearly showed that the sensitivity
follows a rather unusual trend. The spectral estimate was more se-
verely affected by perturbations in the center of the specified
acquisition time than similar perturbations at either the beginning
or end of the data. Also, the number of times each data point ct

appears in the data matrices mirror a similar trend
(M � jM + p � t � 1j), namely a triangular function with an apex
in the middle of the time interval t = M. Rather naively, one can
associate this distribution of the data points (3) in the Hankel
matrices with the bias in the sensitivity in order to understand
the unusual results.

Clearly, these results may cause one to modify acquisition strat-
egies, as obtaining superior signal-to-noise for the central points
may have more effect on the accuracy of the spectrum than a
corresponding improvement at the beginning or end of the data.
This aspect would probably only be relevant in multidimensional
NMR, where different numbers of transients could be acquired
(and each increment then appropriately scaled). However, perhaps
other interferometric methods like FT-IR could benefit by non-uni-
form signal averaging. In addition, the sensitivity analysis shows
that very long acquisition times, in which most the signal intensity
may have decayed, could pose problems for any method that tries
to solve the harmonic inversion problem. In this case the fidelity of
the central time points may not be high enough, due to noise con-
tamination, to allow accurate spectral estimation. In other words,
the ‘‘super-resolution” methods may not offer any improvement
in resolution, but could instead become ‘‘super-sensitive” to small
errors.
While FDM requires a uniform time grid to take advantage of
the Fourier basis, so-called non-uniform sampling (NUS) strategies
can operate by deleting acquisition of certain data points, by skip-
ping increments or taking random time intervals within some sam-
pling schedule. Some schedules, like exponential sampling, seem to
have been justified by persuasive but ad hoc arguments, such as
those based on the assumption that more data points should be ta-
ken at times where the signal is generally big, and fewer points
should be taken at longer times where the signal is smaller from
its decay. While the present paper does not completely exclude
this argument, it presents results that are somewhat at odds with
it. The true situation for NUS would be clarified by a proper sensi-
tivity analysis, such as that undertaken here for the HIP.

7. Conclusions

The HIP is a key numerical problem across a wide range of dis-
ciplines, and is widely used in different contexts to try to obtain
more information from a given data set than allowed by the Fou-
rier transform uncertainty principle, or, equivalently, to speed up
data acquisition by allowing shorter acquisition times. Surpris-
ingly, the weight of a data point, as measured by the number of
times it appears in the data matrices, translates into different sen-
sitivity (in the mean) for parameters of the method. The present
work introduced a straightforward approach to analyze the sensi-
tivity of the solutions of the harmonic inversion (or spectral esti-
mation) problems. This approach was implemented within FDM,
which is an efficient, but particular method of solving these prob-
lems. It was argued that as long as the spectral analysis method is
associated with the HIP, the sensitivity of the solution will behave
universally as a function of time. In particular, the solution will be
most sensitive to the data points in the middle of the time interval
and least sensitive at its edges. This counterintuitive fact may be
exploited, for example, by optimizing the sampling schedule
accordingly to minimize the total experimental time for a given
resolution requirement. However, additional studies are certainly
needed to analyze other spectral inversion techniques. The new
sensitivity theory proposed in this paper is well suited for such
analyses.
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Appendix A. Eigenvalue and eigenvector derivatives

By multiplying the generalized eigenvalue problem Eq. (4) from
the left by BT

k and differentiating it with respect to ct we have

@

@ct
BT

kðU
ð1Þ � ukUð0ÞÞBk ¼ 0:

Then using

0 ¼ @

@ct
BT

kUð0ÞBk ¼
@BT

k

@ct
Uð0ÞBk þ BT

kUð0Þ
@Bk

@ct
þ BT

k
@Uð0Þ

@ct
Bk;

we obtain a variant of the Hellman–Feynman theorem:

@uk

@ct
¼ BT

k
@Uð1Þ

@ct
� uk

@Uð0Þ

@ct

 !
Bk; ðA1Þ

which provides the eigenvalue derivatives essentially without any
extra numerical effort.

Besides its numerical convenience, the result given by Eq. (A1)
is quite remarkable, in particular, because in infinite precision
arithmetic the eigenvalue derivative is invariant under the basis
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transformation, as long as the latter is not rank-deficient. Namely,
consider square non-singular matrix Z, with det(Z) – 0, so that the
inverse Z�1 exists.

If Z does not depend on ct we have

@ eU ðpÞ
@ct

¼ ZT @UðpÞ

@ct
Z: ðA2Þ

Eq. (A1) is then rewritten as

@uk

@ct
¼ eBT

k
@ eU ð1Þ
@ct

� uk
@ eU ð0Þ
@ct

 !eBk

¼ Z�1Bk

� �T
ZT @Uð1Þ

@ct
Z � ukZT @Uð0Þ

@ct
Z

 !

� Z�1BkBT
k
@Uð1Þ

@ct
� uk

@Uð0Þ

@ct

 !
Bk; ðA3Þ

which proves that @uk/@ct is invariant under the basis
transformation.

To obtain the derivative of the eigenvector Bk we first expand it
into the eigenbasis by writing

@Bk

@ct
¼
X

m

xmBm; ðA4Þ

with unknown coefficients xm, which can be obtained by differenti-
ating the orthonormality condition (5):

0 ¼ 2BT
kUð0Þ

@Bk

@ct
þ BT

k
@Uð0Þ

@ct
Bk ¼ 2BT

kUð0Þ
X

m

xmBm þ BT
k
@Uð0Þ

@ct
Bk

¼ 2xk þ BT
k
@Uð0Þ

@ct
Bk:

Differentiating Eq. (4),

@Uð1Þ

@ct
� @uk

@ct
Uð0Þ � uk

@Uð0Þ

@ct

 !
Bk ¼ ukUð0Þ � Uð1Þ

� � @Bk

@ct

¼ ukUð0Þ � Uð1Þ
� �X

m

xmBm;

and multiplying both sides by BT
n (n – k) and also using Eqs. (A1)

and (5) we get

BT
n � RHS ¼ BT

nðuk � unÞ
X

m

xmBm ¼ ðuk � unÞxn;

BT
n � LHS ¼ BT

n
@Uð1Þ

@ct
� uk

@Uð0Þ

@ct

 !
Bk:

Combining the above results we obtain

@Bk

@ct
¼
X
m–k

Bm

uk � um
BT

m
@Uð1Þ

@ct
� uk

@Uð0Þ

@ct

 !
Bk �

Bk

2
BT

k
@Uð0Þ

@ct
Bk: ðA5Þ

By analogy with Eq. (A3) it can be shown that for a square non-
singular matrix Z the eigenvector derivative is unchanged:

@Bk

@ct
¼ @

eBk

@ct
: ðA6Þ
Appendix B. The spectral estimation problem and Regularized
Resolvent Transform

In this appendix we consider a problem related to the harmonic
inversion problem, namely, given a finite time signal c(ns) � cn(n =
0, . . . ,N � 1), estimate its infinite-time Discrete Fourier Transform
(DFT) spectrum S(f)
Sðf Þ ¼ � sc0

2
þ s

X1
n¼0

e�i2pnsf cn � �
sc0

2
þ s

X1
n¼0

z�ncn; ðB1Þ

where z: = ei2psf.
If the signal cn satisfies the harmonic form (1) with 2K 6 N (in

exact arithmetic) the spectrum S(f) can be computed exactly by
the following expression (Resolvent Transform) [8]

Sðf Þ ¼ � sc0

2
þ sCTðUð0Þ � Uð1Þ=zÞ�1C; ðB2Þ

or using the Fourier basis

Sðf Þ ¼ � sc0

2
þ seCT eU ð0Þ � eU ð1Þ=z

� ��1eC : ðB3Þ

Both Eqs. (B3) and (B7) generally require solution of an ill-con-
ditioned linear system,

Rðf ÞXðf Þ ¼ C; ðB4Þ

with

Rðf Þ ¼ Uð0Þ � Uð1Þ=z;

and

Sðf Þ ¼ CTXðf Þ: ðB5Þ

The ill-conditioned linear system can be solved using the
regularization:

ðRyðf ÞRðf Þ þ q2ÞXðf Þ ¼ Ryðf ÞC; ðB6Þ

Iðf Þ ¼ CT Ryðf ÞRðf Þ þ q2
 ��1
Ryðf ÞC; ðB7Þ

Iðf Þ ¼ eCT eRyðf ÞeRðf Þ þ q2
� ��1eRyðf ÞeC ;

where q is the regularization parameter that controls the condition
number of the initially ill-conditioned matrix R�R.

We note here that unless heavy regularization (in the case of
highly ill-posed problem) is applied to solve Eq. (B4), the RRT spec-
trum S(f) is indistinguishable from the FDM spectrum computed by

Sðf Þ ¼ � sc0

2
þ s

X
k

dkð1� uk=zÞ�1
: ðB8Þ

An expression for the spectral sensitivity Eq. (13) in terms of the
spectral derivative, as defined by Eq. (14), can be obtained by dif-
ferentiating Eq. (B7):

@

@ct
Sðf Þ ¼ CT @X

@ct
þ XT @C

@ct
;

where XT@C/@ct = Xt and

@X
@ct
¼ R�1 @R

@ct
R�1C;

which after some algebra gives

@

@ct
Sðf Þ ¼ Xt þ

XminðM�1;tÞ

n¼maxð0;t�MÞ
Xn Xt�n � z�1Xt�n�1
� �

: ðB9Þ

The first term in Eq. (B9) has a simple dependence on t, but the
second term depends on t nonuniformly, in a fashion similar to
that of the eigenvalue derivatives Eq. (21).
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